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Abstract—Simple closed-form solutions are derived for the pressure necessary to initiate and
propagate the buckle down the tube. The calculations are performed assuming that the dominant
effect on the plastic energy dissipation has the circumferential bending mode. Using a rigid-plastic
material idealization a simple moving hinge model which describes the deformation of a ring into
a “dumbbell” shape is proposed. Strain-hardening effects are taken into account in an approximate
way. The propagation pressure P, is shown 1o be controlled by the thickness to diameter ratio of
the shell and the ratio of the work-hardening modulus to the flow stress of the material. The resulting
analytical solution for P, is compared with the experimental results of Kyriakides ef a/. and the
previous analytical solution due to Palmer and Martin. The solution for the initiation pressure P;
is derived on the basis of the same structural model in conjunction with a new conceptual model
for buckle initiation. The derived solutions for both P, and P, are shown to correlate well with the
experimental results recently reported in the literature.

NOTATIONS

a,b numerical constants in eqn (22b)
function defined in eqn (7)
g(m)  minimum value of F(x, y,m) for fixed m, Table 1
tube wall thickness
m  {(E,jo,) (h/D), stran-hardening parameter
n  exponentn eqn (34)
r  ageometnic parameter defined in Fig. 5(b)
{ tme
x RJ/R
¥y RyR
A area enclosed within the collapsing tube
Ay  nR? = the initial value of 4
A, final value of 4
A*  value of A4 corresponding to the idealized damaged section
D tube diameter
D*  Figure S
E,. internal (plastic) work for a unit length of tube
E.. external work done by the pressurizing medium
E  modulus of elasticity, eqn (34)
E, strain-hardening modulus
F  equation (21)
M, yield moment at the ith hinge, eqn (10)
M, o4
M, , Mz yield moments at moving hinges A" aad &’
P external pressure
P, propagation pressure
P, initiation pressure
P,  buckling pressure
R D2, tube radius
R, Ry radii of curvature of the deformed parts, Fig. 3
vV velocity of the traveling hinge in the tangential direction
Y  uniaxial yield stress according to the API definition
a,ff  angles which describe the current position of the moving hinges, Fig. 3
o, B, values of « and § at touchdown
y exponentin P,/oy = C(h/DY
¢ total engineering strain
¢ plastic strain
6* Figure 5(a)
¢ half-length of the straight line segments, Fig. 5(b)
¢  engineering stress
7, uniaxial initial yield stress in the rigid linearly strain-hardening idealization
o, uniaxial yield stress (0.2% offset)
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change 1n meridional curvature

angular velocity of an element of the ring for rotation in the plane of the nng
jump in the enclosed quantity across stationary or moving hinges

(8/01) (), differentiation with respect to time

quantity associated with a magnitude of damage given by D*

K 1/R, curvature (Section 10)

D=

—~
[ RS

1. INTRODUCTION

The propagating buckle is a phenomenon in which an overall damage of large sections of
pipelines takes place due to a catastrophic collapse of tube cross-sections under external
pressure. The buckle is usually initiated from a local dent on a tube. Once initiated, the
buckle propagates at high velocity flattening the pipe or cylindrical shell. This problem was
first encountered in offshore pipeline applications. A proper understanding of the process
of initiation, propagation and buckle arrest is of great importance to the offshore petroleum
industry. A need for improved analysis of this problem is expected to continue in the future
as the activities of exploration and exploitation of offshore mineral and oil deposits expand
into deeper waters where external pressures are higher.

The minimum external pressure required to propagate a buckle down the pipe under
steady, quasistatic conditions is called the propagation pressure, P,. It is less than the
initiation pressure P,, which is the minimum pressure at which a dent or local damage will
transform itself into a propagating buckle. Both P, and P, are usually much less than the
buckling pressure P, of perfect geometry shells under external pressure, for pipe sizes of
interest in offshore applications. Palmer and Martin[1] gave one of the early accounts
of the buckle propagation phenomenon. Mesloh et al.[2] conducted the first systematic
experimental study of the problem using both small and full scale specimens. Kyriakides,
Babcock et al.[3-5] have carried out extensive theoretical and experimental studies of a
number of aspects of buckle initiation, propagation and arrest. Recently, Chater and
Hutchinson[6]} proposed a numerical procedure for estimating the propagation pressure,
using the deformation theory of plasticity. Specifically, a plane strain ring model was
used to estimate the energy dissipated in plastic deformation. Kyriakides et al.[7] used the
same procedure, with minor changes, to predict the propagation pressure of some steel and
aluminum alloy tubes.

In this article we apply the kinematic methods of plasticity to derive simple analytical
solutions for the propagation and initiation pressures. The propagation pressure is calcu-
lated assuming that the dominant effect on the energy dissipation has the circumferential
bending mode. Based on a rigid-plastic material idealization, a simple moving hinge model
which describes the ring deformation to dumbbell shape is proposed. Strain-hardening effect
is taken into account in an approximate manner. The resulting simple analytical solution
for P, is compared with the experimental results of Kyriakides et al. and the previous
analytical solution due to Palmer and Martin. The solutions for the initiation pressure P,
are derived on the basis of structural models for ring deformation in conjunction with a
new conceptual model for buckle initiation. The derived solutions for P, are shown to
correlate well with the experimental results reported in [5].

In an attempt to bring the theory closer to experiments, Croll[8, 9] extended Palmer’s
solution by incorporating the strain hardening of the material. However, his solution was
based on a different kinematic model of the ring, and the resulting propagation pressure is
smaller than in the present solution, especially for thicker tubes or larger work-hardening
modulus. A detailed comparison of the present solution with that of Croll is presented in
the last section of this article.

2. ANALYSIS OF THE EXTENSIBLE AND INEXTENSIBLE DEFORMATION MODELS

Under steady-state quasistatic conditions the work done by the pressure due to the
consequent volume change is equal to the energy of deformation. Since the deformation is
very large, plastic deformation dominates over the effects of elasticity. Palmer and Martin{1]
assumed that the plastic energy dissipation is mainly in inextensional circumferential bend-
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ing of the tube sections. Using a ngld perfectly plastic material ldeahzatxon they estimated
the plastic work of deformatidii in a ring model with TSur ifiexténsional “plastic hinges as
shown in Fig. 1(a), and derived the following expression for propagation pressure

P, = noo(hID)?, (1)

where g, is the yield stress of the pipe material, 4 is the pipe thickness, and D is the diameter.
Equation (1) is known to underestimate the propagation pressure, especially for steel
pipes. Another drawback of this model is that it corresponds to a one-parameter material
idealization. Experimental observations on steel and aluminum alloy pipes indicate that it
is important to account for differences in strain hardening([3]. In this regard, it is interesting
to note that strain-hardening effect was found to be significant in a related problem of
lateral crushing of tubes between rigid plates[10].

Chater and Hutchinson[6] and Kyriakides et al.[7] also assumed that the dominant
effect is the ring deformation mode. These authors calculated the plastic work of ring
deformation numerically, assuming the appropriate relation for the uniaxial stress—strain
behavior of the pipe material. Using accurate representation of the material stress—strain
behavior, numerical results were obtained for the propagation pressures of a number of
steel and aluminum alloy tubes.

The inextensibility of the tube generators imposes an important restriction on the mode
of ring deformations. This can be best explained on a somehow simpler model of a square
tube collapsing under an external pressure. Suitable models of such tubes made of con-
struction paper are shown in Figs. 2(a) and (b), respectively. The model with stationary
plastic hinges, Fig. 2(a), could not be constructed without precutting the paper. This means
that there must be considerable shear and/or extensions present in this model. Moreover,
it is easy to see that the lengths of the generators 44’ and BB’ are different which further
support the conclusion about the shape distortion during buckle propagation.

An alternative model in which plastic hinges travel with respect to the material points
is shown in Fig. 2(b). All generators are seen to be of equal length so that no axial
deformation is produced during the buckle propagation process. It should be pointed out
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Fig. 1. (a) Stationary hinge ring model of Palmer and Martin. (b) Predicted final shapes of the
collapsed tube made of a rigid-perfectly plastic material, (~ - -) Palmer and Martin model,
(——) present traveling hinge model (with m = 0).
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that the model with traveling plastic hinges represents the motionless configuration, where
slope discontinuities are allowed. In the same model set into motion, the slope discontinuities
would vanish giving rise to a smooth cross-sectional shape.

The above discussion indicates that a consistent model of the propagating buckle
should include the following deformation modes :

(1) Bending of rings at stationary plastic hinges plus cxtensions of the gencrators, or
(2) Bending (and rebending) of rings at moving plastic hinges but no extension of tube
generators.

The difficulty in proceeding with the first possibility is the fact that the amount of axial
extension depends on the length of the transition zone between the initial circular and
collapsed section. This length cannot be determined from the theory of steady-state buckle
propagation.

Here we shall explore the second possibility. For circular tubes the conclusion that the
generators are fully inextensibie is not true, but our preliminary calculations indicate that
the longitudinal strains are likely to be within the elastic range, except for very low values
of D/h. In recent years the theory of traveling hinges has been successfully applied in the
analysis of numerous practical problems in which deformations are large and highly loca-
lized (see for example [11-13], etc.). This theory will now be used to construct a structural
model for the ring deformations which closely resembles the actual shapes observed experi-
mentally and leads to a simple closed-form solution.

Our traveling hinge model for the ring deformation is based on the rigid-linearly strain
hardening idealization of material uniaxial stress—strain behavior. The ring is assumed to
undergo inextensional deformation from the initial circular shape to a final dumbbell shape.
The shapes of a collapsing ring at various stages of collapse (as per the proposed model)
are shown in Fig. 3. Initially, four equispaced hinges form on the circular ring, as in Palmer’s
model. However, in contrast to Palmer’s model, we allow the hinges to move with respect
to material points. As the deformation progresses, each of these plastic hinges splits into
two hinges traveling in opposite directions. A hinge or hinge-line moving down an un-
deformed surface leaves behind a deformed surfacef11]. For simplicity, we assume that the
deformed parts of the ring are also of constant curvature. The model assumes that the
central hinges (such as 4’) leave behind a region of constant curvature — 1/R |, and the side
hinges (such as B’) leave behind a region of constant curvature 1/R;. Due to the symmetry,
deformation behavior of the four quadrants of the ring is identical. The kinematics of one
of the quadrants (4 B) is shown in Fig. 3(b). The point 4’ shown in Fig. 3(b) represents the
current position of one of the moving hinges which originated at the material point A
(similarly B’). As the deformation proceeds, the length of the undeformed portion of this
segment, A’ B’, diminishes while the lengths of the deformed portions, 44" and BB’, increase.
In view of the inextensibility assumption, the total perimeter of the ring remains constant.
For one quadrant

oaR,+BR,+ R(n2+a—p) = nR/2, )

where o and f are angles shown in Fig. 3, and R is the initial mean radius of the circular
tube. Equation (2) can be nondimensionalized to give

a(1+x) = f(1-y), (3)
where
X=R|/R and y=R2/R. (4)

It may be noted that the nondimensional radii x and y are assumed to remain constant
during the deformation process. Since « and § are related by eqn (3), any one of the two
radii may be taken to be the independent time-like parameter which describes the process
of deformation. In the following, we will take a to be the time-like parameter.
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Fig. 2. Photographs of construction paper models for the propagating collapse of a square tube,
(a) a stationary hinge model, (b) a traveling hinge model.
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(v)

Fig. 3. The proposed traveling hinge mode! for ring deformation, (a) the initial, intermediate, and
final shapes of a deforming ring, (b) details of the kinematics of deformation.

Touching of the two opposite quarter points occurs when « =&, The geometric
condition for touching can be put as

(14) cos a—(1—) sin {(%‘)a,}—x - g =0, )

where eqn (3) has been used to eliminate f;, which is the final value of .
The area enclosed by the collapsing tube A at a current value of the parameter a is

A(®) = nR*— 2R (a), )

where

S(@) = [G%)a +(1—y)p sin’{; i; a} l:tan a+cot {i—t; a}]

of 14+x . fl1+x
+ x%0 — T:;)a—{(l-}-x) cos ¢—(1~y) sin (l—_-_-—}; )}) tan oc]. ©))]

The area is seen to diminish from the initial value at @ =0, 4, = 4(0) = nR? to its final
value 4(x;) = 4,. The current nondimensional reduction and the maximum reduction of
the enclosed area are defined respectively by

[Ao—A@)R? =2f (@),  (Ao—A)/R? =2f (). (8a,8b)
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The rate of work of external pressure £,,, is

dr (a)

Ep=— -P2R? 2 I

(92)

where a dot denotes differentiation with respect to time. If the external pressure P is constant,
then the total external work in collapsing a ring to touchdown is

Eexl J Een dl P(AO_A]’) (gb)

3. CALCULATION OF INTERNAL ENERGY DISSIPATION

Let us consider collapse of a ring of unit length in the axial direction. According to
the kinematics of our model, plastic dissipation is restricted to the moving hinges only;
there is no continuously deforming region. The time rate of internal dissipation is

8
Emt = ‘Z‘ IMI[QM’ (10)

where M, is the yield moment of the tube wall at the ith hinge, and Q is the angular velocity
of an element of the ring for rotation in the plane of the ring. The symbol [ ] denotes a
jump in the corresponding quantity across stationary or moving hinges. Conditions for
kinematic continuity at moving hinge-lines on shells were discussed by Abramowicz and
one of the present authors[11]. In the present case, these conditions reduce to the following,
at each traveling hinge

[Ql+ Vx] =0, (11)

where x is the circumferential curvature, and V is the velocity of the traveling hinge in the
tangential direction.

Making use of the symmetry of our model and eqn (1) with the appropriate values of
jumps in curvature across the moving hinges A" and B’, we may write eqn (10) as follows:

. 1 1 1 1
En= 4{MA' Ve (R R )+MB Vg(R; - E)}' (12)

where M, and M, are the plastic yield moments, and V, and V, are the tangential
velocities corresponding to the traveling hinges 4" and B', respectively. It is to be understood
that both terms on the right-hand side of eqn (12) are nonnegative. The tangential velocities
of the moving hinges are given by

= Rd, (13a)

Ve =Rif =R (H")a (13b)

We incorporate the strain-hardening effect in our model by relating the plastic yield
moments M, and M to the changes in curvature introduced by the corresponding traveling
hinges A’ and B, respectively. For a rigid-linearly strain-hardening material, the moment
curvature relation for continued bending without strain reversal is

M = Mo+ (ER[12)x, (14)
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where M, = a4h*/4, k is the change in curvature, and o, is the uniaxial yield stress of our
rigid-linearly strain-hardening idealization. It is assumed that the material obeys the Tresca
yield condition, therefore, the yield stress for yielding in the circumferential direction is the
same as the uniaxial yield stress for both plane stress and plane strain ring deformations.

Substituting x = 1/R+1/R, for hinge A" and x = 1/R,~1/R for hinge B’ in eqn (14),
we obtain

M, = M{1+2m(1 4+ 1/x)}, (15a)
My = Mo{1+2m(1/y—1)}, (15b)

where
m = {(E,/a0) (h/D). (16)

Using the results of eqns (13) and (15) in eqn (10), we get the rate of internal dissipation
Ep = 8M{1+m(1/x+ 1/} (1 +x)d. an

The total energy dissipated in plastic work can be obtained by integrating eqn (17):
{,
E, = J‘!E““ dt = 8M{1+m(l/x+1/y)} (1 +x)ay, (18)
[

where ¢ is the time at completion of collapse. We assume that collapse is completed when
the first touchdown occurs. (Subsequent elastic spring back effects are of course neglected.)
This assumption was also made by Chater and Hutchinson[6] who justified it on the basis
of experimental observations of Kyriakides.

4. DETERMINATION OF THE PROPAGATION PRESSURE

The instantaneous pressure necessary to deform the ring can be calculated by equating
the external and internal rate of energy dissipations, £, = E,,,, eqns (9a) and (17). From
the form of these equations it can be seen that the external pressure required to initiate
deformation on a rigid-plastic perfect ring is infinite. (This pressure will be finite and limited
to the elastic or elastic-plastic buckling pressure, if the elastic effects are included.)
The pressure required to progressively deform the ring falls steeply as the deformation
progresses.

As the buckle propagates down the tube, each ring of a unit width undergoes the
entire history of the deformation process from an initial circular shape to the final shape
determined by the terminal value of the parameter « = a,.

The equation for determining the quasistatic propagation pressure P, under steady-
state conditions has to be obtained from the energy balance requirement that the work
done by P, in collapsing the ring (or a unit length of tube) to its final dumbbell shape must
equal the total internal energy dissipated. Using eqn (9b) for E.,,, energy balance gives

PyAo—~A4y) = Ep. 19)

Equation (19) can be interpreted to mean that the propagation pressure is the average
pressure under which a ring will be crushed to the final dumbbell shape. That is, it may be
conceived to be the pressure corresponding to the “Maxwell Line” of the pressure versus
reduction in area curve[6].

Substituting the results of eqns (8) and (18) into eqn (19), we obtain

P, = Foo(h/D)?, 20)
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Table 1
m Xopt Yopt L (rad) g(m) = F{ (m)mm
0 1.095 0 0.441 3.01
0.02 095 0.15 0.492 3.80
0.04 1.01 0.19 0.489 4.26
0.06 1.05 0.21 0.491 4.68
0.08 1.07 0.22 0.493 5.07
010 1.09 0.23 0.494 5.45
where the function F is given by
F=@f){1+m1/x+1/y)} (1 +x)ay, (21)

where f is defined in eqn (7).

It seems reasonable to assume that x >» A/D, and therefore the term A/D can be dropped
from the touching condition of eqn (5). Then eqn (5) can be used to solve for «,, given x
and y. That is, a, = a,(x, ). Therefore, f = f(x, ), and consequently F = F(x, y, m).

We postulate that the steady-state propagation pressure P, will be a minimum with
respect to the parameters x and y which describe the shape of the collapsing tube. Similar
postulates have been successfully used in problems of crushing mechanics (see, for example
[11]). Indeed, for fixed values of m, the minimum of the function F does exist with respect
to both x and y. A short computer program was written to perform this minimization
computation and the results are provided in Table 1. In Table 1, the minimum of F(x, y, m)
at a fixed value of m is denoted by g(m). The following equation adequately approximates
the function g(m) in the range of interest?}

g(m) =3+12m"’". (22a)
Equation (22a) has been obtained by fitting a curve of the type
g(m) = g(0)+am’, (22b)

where a and b are numerical constants to be determined, to the values of g(m) given in
Table 1, by least squares method. The constant term 3.0 is obtained from the consideration
of the limiting case of rigid-perfectly plastic material (see the next section). Equation (20)

now gives
h} 1E, b}’ (h)’
P,—g(m)ao<-5> ={3+12(§-o_—05)’ }0’0 B s (23)

where we have used the definition of m from eqn (16).

5. PROPAGATION PRESSURE FOR THE SPECIAL CASE OF RIGID-PERFECTLY
PLASTIC MATERIAL

The present analysis contains Palmer’s solution as a special case. Palmer assumed
stationary hinges and neglected the thickness in formulating the touching condition. Equiva-
lently, substituting x = y = A =0 in eqn (5), we get &, = n/4. Substitution of these values
in eqn (7) provides f = 1. For a rigid-perfectly plastic material, m = 0, and therefore F ==
from eqn (21), since the term which represents the strain-hardening effect goes to zero.
Equation (20) thus reduces to Palmer’s solution given by eqn (1).

t The exact calculated value of g(0) is 3.01, and the numerical values of 2 and 4 obtained are 12.07 and 0 70,
respectively. We are suggesting the rounded up values for practical applications.
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However, for a rigid-perfectly plastic material, the hinges do not necessarily have to
be stationary. In the limiting cése of m = 0, eqn (20) reduces to

P, ~304(h/D)’, (24)

which is close to eqn (1), but not exactly the same. This is so because x,, # 0 for m =0,
although y,, = 0 (see Table 1). Consequently, the shapes of collapsed tube at touchdown
corresponding to egns (1) and (24) are quite different [Fig. 1(b)]. The present analysis
predicts larger reduction in the enclosed area than Palmer’s analysis. The plastic work of
deformation is also larger, but not large enough to raise the value of F to =.

6. PREDICTION OF WET BUCKLES

The present theory may be used to get an estimate of the maximum strain in the pipe
due to a propagating buckle. Information regarding the maximum strain can be useful in
predicting the so-called “‘wet buckle” which may result from a propagating buckle. Wet
buckle is the name given to any kind of severe damage to an offshore pipeline which has
caused rupture that led to fiooding of pipeline[14]. Wet buckles are very undesirable because
they require dewatering and cleaning up processes (the ruptured underwater pipeline may
get filled up by dirt) which are very time consuming and consequently very costly.

The maximum (circumferential bending) strain is given by

1 1IYVA A1
sm=(R—2—-§)5=5(;,~:), @)

where y = R,/R is a function of the parameter m as given in Table 1. An approximate fit
to this function is

y = 0.4326m° %, (26)
Using eqns (25) and (26),
h 1 265
Emax = 75 {2.31 (-5 %%}0 - 1}. 27

Equation (27) could be used together with an appropriate critical strain ductile fracture
criterion, to predict the possibility of a wet buckle during quasistatic buckle propagation.
Simplified approaches such as this have been successful in predicting the plastic failure of
ductile beams[15] and were recently applied to the rupture analysis of ship plating[16].

7. PREDICTION OF THE INITIATION PRESSURE FOR DAMAGED PIPES

For a propagating buckle to occur it is necessary that the buckle be initiated from a local
damage or dent in the pipe. The possible causes of local damage in a marine environment
are numerous (see, for example, [17, 18]). In this section we limit our consideration to a
particular situation: buckle initiation from a local denting damage which may be caused
by external objects impacting on the pipe. The initiation pressure P,is the minimum pressure
at which the dent would grow and transform itself into a propagating buckle. Clearly, the
shape and magnitude of the dent, as well as the material and geometric parameters of the
pipe, influence the value of P, An exact treatment of this elastic-plastic shell instability
problem would be exceedingly complex, even if particular dent geometries are assumed. A
satisfactory solution for P, would provide the marine industry with a way to estimate
whether a given damage on a pipeline has the potential of being an initiation point for a
propagating buckle.
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Kyriakides and Babcock[5] have recently reported an extensive experimental inves-
tigation of this problem. They found that their experimental data for the initiation pressure
could be coalesced if the initiation pressure was normalized by the propagation pressure
and the damage was characterized by the dimensions of the most damaged section. This
has motivated us to propose the following simple theory for buckle initiation, on the basis
of which simple formulae for P,/P, can be derived in terms of dimensions of the most
damaged section.

We hypothesize that the initiation pressure corresponding to a given dent size [char-
acterized by D*/D of the most damaged section (see inset in Fig. 10)] is equal to the average
pressure which can theoretically propagate the damage down the pipe thus increasing the
extent of damage lengthwise (Fig. 4). This pressure is presumed to be sufficient to deepen
the dent too and subsequently lead to a full collapse of the tube.

The dent is actually deepened during the process of buckle initiation and deepening of
the dent involves extension and shear of tube generators. A rigorous formulation of the
buckle initiation problem should include these effects. We are overcoming this difficulty by
proposing the simple conceptual model according to which buckle initiation can be under-
stood as buckle propagation in a tube with partial closure. It is already known that
extension/shear effects are small in the buckle propagation problem.

The damaged state is the state A4 in Fig. 4. We are applying a small incremental
displacement field so that the neighboring state B is reached. Internal energy dissipation is
only due to the ring crushing mode. The rate of external work can be computed by
multiplying the pressure by the change in volume. However, the “Maxwell Line” argument
is not applicable here, because the tube cannot be in a state of another stable equilibrium
in the absence of touching. Instead we can use the work balance postulate, E,, = E.,,.
Because the tube is not in a state of stable equilibrium, it is conjunctured that the pressure
P, calculated from the above equation will lead to the full collapse of the cross-section.

The shape of the most damaged section is now approximated by a suitable structural
model of deforming ring. Palmer’s model [Fig. 1(a)] or our traveling hinge model (Fig. 3)
or any other suitable model could be used for this purpose. We first illustrate the approach
using Palmer’s stationary hinge model. Correspondingly, the pipe material is now assumed
to be rigid-perfectly plastic. For a damaged section approximated by the stationary hinge
model as shown in Fig. 5(a) it can be shown from the geometry that the minimum diameter
of the damaged tube is related to the corresponding rotation angle of the rigid segments 6*
by

D*/D = 1—sin(n/4—0*). (28)
The area enclosed within the idealized damaged section is then
A* = (n—2+2 sin 26*)R% (29)

The internal plastic work dissipated in deforming a unit length of pipe to the damaged
configuration represented by D*/D or angle 6* is

E,. = 8M(n/4—06%). (30)

Therefore, by energy balance, the minimum pressure required to propagate damage of this
size is given by E,,/(nR*— A*). This is taken to be the initiation pressure corresponding to

Fig. 4. Spreading of damage along the length of tube.
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Fig. 5. Ring models used to predict initiation pressure.

the assumed damage size. Using (29) and (30), we obtain

aM, (n/4—6*)

b= 0=z sm ey (31

The propagation pressure for this model is given by eqn (1). Using eqns (1), (28) and (31),

P, 2 arcsin (—D*/D)
P, "z (-DDf 32

The singularity at D* = D (perfect pipe) is due to the rigid-plastic idealization. In reality P,
will be bound by P,, the elastic or elastic-plastic buckling pressure of the perfect pipe.

Our traveling hinge model of Fig. 3 is too complicated to lead to a simple closed form
result [such as eqn (32)] for P,. Another simpler moving hinge model for ring crushing is
shown in Fig. 5(b). Again, the material is assumed to be rigid-perfectly plastic, to keep the
analysis simple. The details of analysis corresponding to this model are given in Appendix
A. The final result is

P, In (D/D*)
7, = 0 B o1y (33)
which also has a singularity at D* = D. These predictions can further be improved by
incorporating the elastic or elastic-plastic buckling effects which cannot be neglected when
D*/D ~ 1.

An attempt to analytically predict the initiation pressure was made recently by Tam
and Croli[19]). They used energy balance in a small incremental plastic deformation about
the damaged state assuming that the incremental displacement field will be in a certain
shape. The displacement increments were in terms of an increase in the depth of the dent.
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They also neglected the contribution of extensional and shear effects to the incremental
energies. But the justification for this assumption in their approach is, however, not clear
from their paper. According to the calculations presented in [20], the extensional energy
associated with the increase of the depth of the dent contributes to one-half of the total
energy dissipated. A plastic mechanism analysis of tube damage was also presented 1n [19]
as a precursor to their analysis of buckle initiation. The displacement field was assumed to
be in a “mode form” but the final results for the load-response behavior indicate that this
particular assumption is not valid. It is of interest to note that a similar problem arises in
the analysis of rigid-plastic structures on foundations[21]. Rigorous solutions for thesc
problems involve changing shapes of incremental displacement fields[22].

8. COMPARISON WITH EXPERIMENTAL DATA

Experimental results for the propagation pressures of stainless steel and aluminum
alloy pipes of various sizes are given in [7]. All tubes tested by the authors of [7] were drawn
and seamless. The aluminum alloys used were mainly 6061-T6, 6061-T4 and 2024-T3. The
majority of steel tubes tested were stainless steel 304 with various heat treatments and a
few 1018.

To compare our analytical result for the propagation pressure [eqn (23)] with the
experimental data, we need to determine the mean value of E,/o, for each material family
(stee! and aluminum alloys). These values were not explicitly reported in {7]. An experimental
stress—strain curve for $S-304 material of the stainless steel pipes tested by Kyriakides er
al. was, however, given in [7]. This curve is shown in Fig. 6 along with out linear strain-
hardening approximation, from which the value of E,/a, is calculated to be 4.87. It should
be noted that the yield stress ¢, of our linear strain-hardening idealization is different from
the yield stress o, determined using the customary 0.2% offset strain criterion, which is also
shown in Fig. 6. Kyriakides e al[7] used o, to normalize their experimental data on
the propagation pressure of stainless steel pipes. Our analytical result for P,/g, follows
directly from eqn (23), since P,/a, = (¢/0,) (P,/0,). Using oo/, = 1.09 (from Fig. 6) and
E /o, =4.87, our eqn (23) is compared with the experimental results for stainless steel pipes,
in Fig. 7. Also shown in Fig. 7 are the numerical solution of Kyriakides e al. and the
Palmer and Martin solution, eqn (1), assuming the same value of ¢/0,.

An approximate fit to the experimental uniaxial stress-strain curves of some of the
AL-6061-T6 pipes tested by Kyriakides, was given in Ref. [6] as (Fig. 8)

¢ = o/E+(0.005— Y/E) (o] YY", (34)

where E = 6.9 x 10° MPa, with Y/E = 0.0042 and n = 30. Here Y is the yield stress of the
material determined according to the API definition of yield stress (Y = stress at ¢ = 0.005).

¢ (pm ,“-3)
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%o

Oy 7/
30

2
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Fig. 6. Experimental stress~strain curve for §S-304 (Kyriakides es al.[7]) (sohd) and our linear
strain-hadening approximation (broken line).
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Fig. 7. Comparison of the theoretical and experimental results for the propagation pressure of
stainless steel pipes. The experimental points (denoted by A) are taken from [7}.

Equation (34) is plotted in Fig. 9 along with our linear strain-hardening approximation
which is valid in the range of interest of plastic strain, 0 < ¢ < 0.1. The values of ¢, and
E, are determined to be 320 and 210 MPa, respectively, which give E,/a, = 0.66. The ratio
0/ Y comes out to be 1.1. Kyriakide’s experimental values of P,/ Y for aluminum alloy tubes
were also reported in [6]. These test results are compared with our eqn (23) in Fig. 9, where
we have made use of the relation P,/Y = (64/Y) (P,/0,) to obtain the solution for P,/Y from
egn (23). Also shown in Fig. 9 are the numerical solution of Chater and Hutchinson, and
the Palmer and Martin solution [eqn (1)] assuming the same value of 6,/Y.

It is seen that the present solution for the propagation pressure correlates well with
the experimental data, in the considered range of D/h. Palmer and Martin’s solution is
significantly lower than the present solution in the case of the stainless steel pipes. For the
aluminum alloy pipes the difference between the two solutions is not large, since the
material has low strain-hardening. The theoretical results are, in the main, somewhat lower

% e )
Y —,/
200
0
[
(MPa) §
3
100
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Fig. 8. Chater and Hutchinson’s fit to the experimental stress—strain curves of AL-6061-T6 pipes
tested by Kyriakides (solid line), and our linear strain-hardening approximation (broken line).
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Fig. 9. Comparison of the theoretical and experimental results for the propagation pressure of
aluminum alloy pipes. The experimental points (denoted by A) are taken from [6}.

than the experimental ones. As noted in [7], this is attributable to the fact that only
deformations of the cross sections were considered in energy balance.

In Fig. 10 we compare the present analytical results for the initiation pressure nor-
malized with respect to the propagation pressure, eqns (32) and (33), with the experimental
data reported in [5]. The pipes used in these experiments were made of steel. The initial
denting damage was inflicted on the pipes using a knife edge indenter or a point indenter.
It is seen that the theoretical predictions correlate reasonably well with the experimental
data, considering the approximate nature of the theory and the fact that the theoretical
initial damage shapes were symmetric while the experimental ones were unsymmetric.
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Fig. 10. Comparison of the theoretical predictions for P,/ P, with the experimental data of Kyriakides
et al. [5).
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9. DISCUSSIONS AND CONCLUSIONS

The article presents our analytical solution for the propagation pressure P,, which is
the minimum external pressure causing the buckle to propagate once it has been initiated.
This pressure is especially significant since at any pressure below P, buckles cannot propa-
gate, while at any prescribed pressure above P, the buckle (once initiated) will run dynami-
cally, collapsing the entire length of pipe. The present solution describes the main features
of the problem. The solution is constructed on the basis of a ring deformation model which
uses the concept of traveling hinges. Strain-hardening effect is included in an approximate
manner. The final result for the propagation pressure is given by eqn (23) which was
shown to correlate well with the experimental data of Kyriakides et al. (Figs. 7 and 9).

The present solution is a significant improvement on the previous analytical solution
due to Palmer and Martin in the sense that the strain-hardening effect (which is significant
for tubes made of materials such as steel) is included in the solution. Also, the deformed
shape of the tube resulting from our moving hinge model resembles very closely the “dog-
bone’ shape observed in practice.

The formula (23) contains two terms in the variable 4/D. For the stainless steel 304,
and the ratio E,/o, = 4.87, the normalized propagation pressure is given by

P,/oy = 3(h/D)*+16.84(h/D)?". (35)

Several authors in the past including Mesloh er a/.[2] and Kyriakides and Babcock[3]
observed that a single power law P,/o, = C(h/D)’ with y =2.25/2.5 gave a fairly good
approximation to the propagation pressures in a certain range of 4/D. The present solution
offers an explanation of this observation since the exponent y is seen to lie somewhere
between 2 and 2.7.

The predicted results are, in the main, lower than the experimental ones. This is
attributable to the fact that only deformations of cross sections are considered in energy
balance. For very thick tubes, thick wall effects and large strain effects may prevail.
Moreover, our simplified analysis neglected the effect of the thickness on the touching
condition. Therefore, the present solution is not expected to be accurate for D/h < 20.

It should be emphasized that the numerical solutions of the ring deformation problem
do not lead to results that are any closer to experimental points than the present analytical
prediction. The present paper also includes theoretical solutions of an approximate nature
for the initiation pressure normalized with respect to the propagation pressure (P,/P,).
These solutions [eqns (32) and (33)] correlate reasonably well with the experimental data
reported in [5].

In addition to the above results the paper suggests a simplified approach to quantify
the initiation of rupture in a pipeline during a quasistatic buckle propagation.

A unique feature of the present traveling hinge method is a possibility of extending the
solution to the case of buckle propagation in a confined medium. The stationary hinge
solution is inapplicable in this case while the numerical solution would require the treatment
of the contact phenomena. The expression for the confined buckle propagation pressure
will be derived in a future publication.

10. COMPARISON WITH THE SOLUTION BY CROLL

After the present work was completed, the authors came across an interesting paper
by Croll[8] presented at the Offshore Mechanics and Arctic Engineering Symposium in
Dallas, February 17-21, 1985. Since the objective of these two articles is similar, it will be
instructive to compare the present approach with that used by Croll. In both approaches,
the deformed shape of the ring consists of a system of arcs with various radii, so that the
dog-bone shape of the buckle is well reproduced. However, the deformation process to
reach the same final state is different in the two solutions.

In order to show the similarities and differences in the corresponding plastic work
calculations, consider a section of an inextensible ring of the initial radius R, and arc length

SAS 22:9-D



1002 T WierzBicKl AND § U. BHAT

(¢)

Fig. 11. Comparison of the present strain-hardeming model with that of Croll.

&. The ring is brought to a smaller final radius R, so that the final value of the central
angle a, is given by .# = R,«, (Fig. 11).

In Croll’s analysis{8], it was assumed that the final state is reached by gradually
decreasing curvature of the arc from K, = 1/R,to K; = 1/R,. The rate of energy dissipation
in the continuous deformation field is

E= J MK dl = MK, (36)
&£

where d/ is the increment of the arc length. The total plastic energy is a time integral of
eqn (36):

3 K,
E=J Ed:=j ¥MdK, 37
0 Ky

where at ¢ = 0, K = K and at the end of the process ¢ = ¢, the curvature is equal to its final
value K = K,. Now, assuming the length of the plastically deforming zone to be constant
during the deformation process, eqn (37) is reduced to

K
EcroL =R, J; M) dK. (38)

For a work-hardening material the state of stress is continuously moving along the moment
curvature curve from the points 4 to Eso that the plastic energy dissipation E is proportional
to the area under this curve.

Present analysis
The assumed kinematic model consists of a discrete plastic hinge moving with velocity

V with respect to material points. The rate of plastic work is defined as a product of a
bending moment and an angular velocity [6] in the hinge

E = M[4). 39

Using the condition of kinematic continuity [6]+ V[K] = 0 (see, for example, [23]). Equation
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(39) can be transformed to
E=—MV[K]= MV[K,—K,]. (40)

In front of the hinge, the curvature is 1/R, and behind it 1/R,. Hence at each stage of the
deformation both M and [K] are constant. The only parameter of the process is the variable
tangential velocity V.

The total plastic work is equal to the time integral of eqn (40):

Ey_p= J‘ " dt = MK, —K,] f’ V() de. , @1)
0 0

The time integral of the tangential velocity is the distance traveled by the hinge & = R a,.
Thus the final expression for the plastic energy becomes

Ey_g=a,RMK,—K]. 42)

For a work-hardening material, the bending moment corresponding to the final curvature
K, is M(K,). Consequently, the state of stress is sitting at the point E throughout the entire
deformation process. The corresponding plastic work is represented by the rectangular area
which is generally greater than the trapezoidal area.

In the limiting case of a rigid-perfectly plastic material M(K) = const = M. It is easy
to see that eqn (38) reduces then to eqn (42). The plastic energies calculated using Croll’s
and the present model are the same. With increasing the work-hardening parameter,
Croll’s formula tends to underestimate the plastic energy dissipation. This is illustrated in
Fig. 12 were a nondimensional propagation pressure is plotted versus the so-called buckle
propagation parameter m. For aluminum pipes with /D = 1/20, the propagation parameter
is of the order m = 0.01, so that the difference between the two solutions is insignificant.
Mild steel pipes of W/D = 1/20 are characterized by m = 0.08 for which the same difference
is not negligible.

We can conclude that both the present and Croll’s approaches are theoretically sound.
The final solutions are however different since plastic work is path dependent and the
assumed paths are not the same. A final test of any approximate analytical solution must
be in the experimental verification. Both solutions describe accurately the final shape of the

0 0.05 m 0.1

Fig. 12. Comparison of the present theoretical result for propagation pressure with that of Croll[8]
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collapsed tube. However, our solution better fits the test points for the minimum propa-
gation pressure. Therefore, we recommend our formula for design purposes.
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APPENDIX A

The deformed ring shape shown in Fig. 5(b) consists of two straight line segments and two circular arcs.
The perimeter of the ring is assumed to remain constant ; therefore, the radius 7 of the circular arc is related to
half the length of the linear segment £ by

r/R=1-2¢/nR. (Al)
From the geometry of the deformed ring,
D*/D =r*[R, (A2)
where r* is the value of r corresponding to a given D*.
Plastic energy dissipation takes place at the four traveling hinges 4, B, C, D and also throughout the arcs of

radius r which undergo uniform change of curvature at any instant. The rate of energy dissipation has now an
additional term due to the continuously deforming region:

Ew= 3. ML+ L MK d, (A3)

where the first term on the nght-hand side has the same interpretation as in eqn (7), L is the total of the length
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continuously deforming region, and K is the rate of change of curvature. Differentiating K = 1/r, one gets
K = —F/r?. Rigid-perfectly plastic material 1s assumed, so that |M,| = |M| = M, Using eqn (8) to determine [Q),
we can write

E = 4Mo(Vin)+2nrM o(—FIr), (A4)

where V = d{/dt is the velocity of the maternal past the hinges. Using eqn (A1), we get ¥V = —n7#/2, which simplifies
eqn (A4) to

En = —4nM(r/r). (AS)
It is trivial to compute the area enclosed by the deformed ring
A =nr+4rf =2nRr—nr. (A6)

According to the hypothesis proposed in the body of the paper,

J-'. E,.dt —4nM, J‘r. (dr/r)
- u R

b=~ WR—r*F
which gives (A7)
» _4M, In(R/r*)
T (R=-r*)?

We now need a solution for P, according to this model. Using the fact that propagation pressure is the mimmum
initiation pressure, we minimize P, given by eqn (A7) with respect to r* to get

P, =9.8M,/R%. (A8)
Combining eqns (A2), (A7) and (A8),

P, 041 In(D/D*)

P,” (D/D*<1) ° (A9



